accacs.2021.11.issue-10.largecover.jpg

Flexible Ligand in a Molecular Cu Electrocatalyst Unfurls Bidirectional O2/H2O Conversion in Water

 

A. Ali, D. Prakash, P. Majumder, S. Ghosh*, A. Dutta*

ACS Catalysis, 2021, 11, 10, 5934–5941

cs1c01542_0008.gif
cover trends in chem.webp

Organopalladium Intermediates in Coordination-Directed C(sp3)-H Functionalizations

 

A. S. Suseelan, A. Dutta*, G. K. Lahiri*, D. Maiti*

Trends in Chemistry, 2021, 3, 3, 188-203

trends in chem_JPG.webp
CRPS.gif

Bio-inspired Cobalt Catalyst Enables Natural-Sunlight-Driven Hydrogen Production from Aerobic Neutral Aqueous Solution

 

D. Dolui, S. Das, J. Bharti, S. Kumar, P. Kumar, A. Dutta* 

Cell Reports Physical Science

2020, 1, 1, 100007.

CRPS.jpg
NJC 2020.jpeg
NJC_2020_1.jpeg

Perturbing the AIEE activity of pyridine functionalized α-cyanostilbenes with donor substitutions: an experimental and DFT study

 

P. Jana, M. Paramasivam, S. Khandelwal,

A. Dutta, S. Kanvah

New Journal of  Chemistry

2020,44, 218-230.

accacs_v009i011.jpg

Enzyme-inspired synthetic proton relays generate fast and acid stable Cobalt-based H2 production electrocatalysts

 

D. Dolui, S. Khandelwal, A. Saikh, D. Gaat,

V. Thiruvenkatam, A. Dutta*,

ACS Catalysis

2019, 9, 10115−10125. 

(Selected as front cover figure)

ACS_2_2019.gif
jove image.jpeg

Developing photosensitizer-Cobaloxime hybrid for solar-driven H2 production in aqueous aerobic conditions

 

A. Q. Mir, D. Dolui, S. Khandelwal, H. Bhatt, B. Kumari, S. Barman, S. Kanvah, A. Dutta*

Journal of Visualized Experiments (JoVE) 

2019, 152, e60231, DOI:10.3791/60231.

jove 2.jpg
Jove1.jpg
ACSEL.jpg
aelccp_v004i010-4.jpg

Plasmonic gold nanoprism-Cobalt molecular complex dyad mimics Photosystem-II for visible-NIR illuminated neutral water oxidation

 

A. Q. Mir, G. Joshi, P. Ghosh, S. Khandelwal,

A. Kar, R. S. Hegde, S. Khatua*, A. Dutta* 

ACS Energy Letters

2019, 4, 2428-2435. 

(Selected as supplementary cover figure)

ACSEL1.gif
aanm 1.jpg

Plasmonic CoO-Decorated Au Nanorods for Photoelectrocatalytic Water Oxidation

 

 

P. Ghosh, A. Kar, S. Khandelwal, D. Vyas,

A. Q. Mir, Arup L. Chakraborty,

R. S.  Hegde, S. Sharma,

A. Dutta*, S. Khatua*

ACS applied Nanomaterials

2019, 2, 5795-5803.

aanm 2.gif
Joule 1.gif

A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells

 

S. Gentil, J. K. Molloy, M. Carrière, A. Hobballah, A. Dutta, S. Cosnier, W. J. Shaw, G. Gellon, C. Belle, V. Artero, F. Thomas, A. Le Goff* 

Joule

2019, 3, 8, 2020-2029.

Joule 2.jpg
ACS_1_1.jpg
ACS_1_2.gif

Inclusion of peripheral basic groups activates dormant cobalt-based molecular complex for catalytic H2 evolution in water

 

S. Khandelwal, A. Zamader, V. Nagayach,

D. Dolui, A. Q. Mir, A. Dutta*

ACS Catalysis

2019, 9 (3), 2334–2344.

NJC 2019_1.jpeg
NJC_2019_2.jpeg

Branching Effect on Triphenylamine-CF3 cyanostilbenes: Enhanced Emission and Aggregation in Water 

 

B. Kumari, S. Singh, R. Santosh, A. Dutta,

S. Mallajosyula, S. Ghosal, S. Kanvah* 

New Journal of Chemistry

2019, 43, 4106-4115.

ACS Omega_1.jpg

Emission and Color Tuning of Cyanostilbenes and White Light Emission

 

B. Kumari, M. Paramasivam ,

A. Dutta*, S. Kanvah*,

ACS Omega

2018, 3 (12), 17376–17385.

(*Corresponding author)

ACS Omega_2.gif
OM 1.jpg

Chemical Method for Evaluating Catalytic Turnover Frequencies (TOF) of Moderate to Slow H2 Oxidation Electrocatalysts

 

A. Dutta*, W. J. Shaw* 

Organometallics

2018, 38, 6, 1311-1316.

(*Corresponding author)

OM 2.gif
NRL 1.png
NRL2.png

Designing electrochemically reversible H2 oxidation and production catalysts

 

A. Dutta*, A. M. Apple, W. J. Shaw,

Nature Reviews Chemistry

2018, 2, 9, 244–252.

(*Corresponding author)

RDMS.jpg

Bio-Inspired H2 Production Catalysts (Mini-Review)

 

D. Dolui, A. Dutta*

Research and Development in Material Science

1(5). RDMS.000524. 2017

RDMS1.png

Publications during Ph.D. and Post-doc research

S. Gentil, N. Lalaoui, A. Dutta, Y. Nedellec, S. Cosnier, W. J. Shaw, Vincent Artero, and A. Le Goff, Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells, Angewandte Chemie International Edition, 2017, 56, 1845-1849.

 

N. Priyadarshani†, A. Dutta†, B. Ginovska, G. W. Buchko, M. O’Hagan, S. Raugei, and  W. J. Shaw, Achieving Reversible H2/H+ Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study, ACS Catalysis, 2016, 6, 6037–6049. (†Equally contributing authors)

 

P. Rodriguez-Maciá, N. Priyadarshini, A. Dutta, C. Weidenthaler, W. Lubitz, W.J. Shaw, and O. Rüdiger, Covalent Attachment of the Water-insoluble Ni(PCy2NPhe2)2 Electrocatalyst to Electrodes Showing Reversible Catalysis in Aqueous Solution, Electroanalysis, 2016, 28,  2452-2458.

 

A. Dutta, B. Ginovska-Pangovska, S. Raugei, J. A. S. Roberts, and W. J. Shaw, Optimizing conditions for utilization of an H2 oxidation catalyst with outer coordination sphere functionalities, Dalton Transactions, 2016, 45, 9786-9793.

 

A. Dutta, S. Lense, J. A. S. Roberts, M. Helm, and W. J. Shaw; The role of solvent and the outer coordination sphere on H2 oxidation using [Ni(PCy2NPyz2)2]2+, European Journal of Inorganic Chemistry, 2015, 31, 5218-5225.

P. Rodriguez-Maciá, A. Dutta, W. Lubitz, W.J. Shaw, and O. Rüdiger, Direct comparison of the performance of a bio-inspired synthetic Ni-catalyst and a [NiFe]-hydrogenase covalently attached to electrodes, Angewandte Chemie International Edition, 2015, 54, 12303-12307.

 

A. Dutta, D. Dubois, J. A. S. Roberts, and W. J. Shaw; Amino acid-modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures, Proceedings of the National Academy of Sciences of USA, 2014,111, 16286-16291.

 

B. Ginovska-Pangovska, A. Dutta, M. L. Reback, J. C. Linehan, and W. J. Shaw; Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation, Accounts of Chemical Research, 2014, 47, 2621–2630.

 

A. Dutta, J. A. S. Roberts, and W. J. Shaw; Arginine containing ligands enhance H2 oxidation catalyst performance, Angewandte Chemie International Edition, 2014, 53, 6487-6491.

 

D. Sengupta, S. Gangopadhyay, S. Goswami, A. Dutta, V. Kumar, S. De, and P. K. Gangopadhyay; Novel low-spin mixed ligand thiohydrazide complexes of iron(III): Synthesis, spectral characterization, molecular modeling, and antibacterial activity, International Journal of Inorganic Chemistry,2014, Volume 2014, Article ID 580232, 9 pages, http://dx.doi.org/10.1155/2014/580232.

 

S. Lense, A. Dutta, J. A. S. Roberts, and W. J. Shaw; A proton channel allows a hydrogen oxidation catalyst to operate at a moderate overpotential with water acting as a base, Chemical Communications, 2014, 50, 792-795.

 

A. Dutta, S. Lense, J. Hou, M. H. Engelhard, J. A. S.Roberts, and W. J. Shaw; Minimal Proton Channel Enables H2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst, Journal of the American Chemical Society, 2013, 135,18490–18496.

 

A. Dutta, M. Flores, S. Roy, J. Schmitt, G.A. Hamilton, H. Hartnett, J. Shearer, and A.K. Jones; Sequential oxidation of thiolate and cobalt metallocenter in a synthetic metallopeptide: Implications for the biosynthesis of nitrile hydratase, Inorganic Chemistry, 2013, 52, 5236-5245.

 

Y. Marusenko, J. Shipp, G.A. Hamilton, J.L.L. Morgan, M. Keebaugh, H. Hill, A. Dutta, X. Zhuo, N. Upadhyay, J. Hutchings, P. Herckes, A. Anbar, E. Shock, H. Hartnett; Bioavailability of Nanoparticulate Hematite to Arabidopsis thaliana, Environmental Pollution, 2013, 174, 150-156.

 

A. Dutta, G. A. Hamilton, H. Hartnett, and A. K. Jones; Construction of heterometallic clusters in a small peptide scaffold as [NiFe]-hydrogenase models: Development of a synthetic methodology, Inorganic Chemistry, 2012, 51, 9580-9588.

 

A. K. Jones, B. R. Lichtenstein, A. Dutta, G. Gordon, and P. L. Dutton; Synthetic hydrogenases: Incorporation of an iron carbonyl thiolate into a designed peptide, Journal of the American Chemical Society, 2007, 129, 14844–14845.